Computer Science 294 Lecture 7 Notes

Daniel Raban
February 7, 2023

1 Low Degree Learning and Goldreich-Levin's Algorithm

1.1 Recap: weights and approximation of boolean functions

Recall that if we have a boolean function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$, then we can write

$$
f(x)=\sum_{S \subseteq[n]} \widehat{f}(S) \prod_{i \in S} x_{i} .
$$

We had Parseval's identity

$$
\sum_{S \subseteq[n]} \widehat{f}(S)^{2}=1
$$

and defined the weights at different degrees as

$$
W^{k}(f):=\sum_{S:|S|=k} \widehat{f}(S)^{2}, \quad W^{>k}:=\sum_{S:|S|>k} \widehat{f}(S)^{2} .
$$

We said that f is ε-concentrated up to degree k if $W^{>k} \leq \varepsilon$. We also saw that f is well-concentrated up to degree k if and only if f is well-approximated in ℓ_{2}-norm by $\operatorname{deg} k$ polynomials.

1.2 PAC learning

Today we will be talking about PAC (probably approximately correct) learning [Valiant '84]. The motivation is that given many examples, we want to learn a "simple" hypothesis that explains the data and generalizes.

We make the assumption that the data itself is labeled according to a "simple" function like

- k-junta
- low depth decision tree
- small size decision tree.

More formally, suppose you have a concept class $\mathcal{C} \subseteq\left\{f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}\right\}$, for example decision trees. Let $f \in \mathcal{C}$ be unknown to you. You get a collection of random labeled examples $\left(x^{(1)}, f\left(x^{(1)}\right)\right),\left(x^{(2)}, f\left(x^{(2)}\right)\right), \ldots$ where each $x^{(i)}$ is selected uniformly at random from $\{ \pm 1\}^{n}$. The goal is to output a hypothesis $h:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}^{n}$ such that with probability at least $1-\delta$, the hypothesis is ε-close to f. That is,

$$
\mathbb{P}_{X \sim\{ \pm 1\}^{n}}(h(X) \neq f(X)) \leq \varepsilon .
$$

Valiant originally considered this for distributions which were not necessarily uniform. In that case, you need to compare h and f with respect to that distribution. We will only focus on the uniform case.

Theorem 1.1 (Linial-Mansour-Nisan). Suppose \mathcal{C} is a concept class such that any $f \in \mathcal{C}$ is ε-concentrated up to degree k. Then \mathcal{C} is PAC-learnable (over the uniform distribution) in time $\operatorname{poly}\left(n^{k}, 1 / \varepsilon, \log (1 / \delta)\right)$.

We will show that with probability $\geq 1-\delta$, the algorithm would output h such that

$$
\mathbb{P}_{X \sim\{ \pm 1\}^{n}}(h(X) \neq f(X)) \leq 2 \varepsilon .
$$

Before proving this theorem, we will first prove a lemma:
Lemma 1.1. Let $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ and $S \subseteq[n]$. Then, given random labeled examples, we can estimate $\widehat{f}(S)$ up to additive accuracy ε, with probability at least $1-\delta$ in time $O\left(n \cdot \log (1 / \delta) / \varepsilon^{2}\right)$.

This is a direct consequence of Hoeffding's inequality.
Lemma 1.2 (Chernoff-Hoeffding). If Z_{1}, \ldots, Z_{n} are iid and bounded ($-1 \leq Z_{i} \leq 1$), then

$$
\mathbb{P}\left(\left|\frac{1}{m} \sum_{i=1}^{m} Z_{i}-\mathbb{E}\left[Z_{1}\right]\right|\right) \leq 2 e^{-\varepsilon^{2} m / 2} .
$$

Proof. Recall that $\widehat{f}(S)=\mathbb{E}_{X \sim\{ \pm 1\}^{n}}\left[f(X) \chi_{S}(X)\right]$. Sample m inputs uniformly at random: $x^{(1)}, x^{(2)}, \ldots, x^{(m)}$, and calculate the empirical mean $\widetilde{f}(S)=\frac{1}{m} \sum_{i=1}^{m} f\left(x^{(i)}\right) \chi_{S}\left(x^{(i)}\right)$. Then, by Chernoff with $Z_{i}=f\left(x^{(i)}\right) \chi_{S}\left(x^{(i)}\right)$ (so $\mathbb{E}\left[Z_{1}\right]=\widehat{f}(S)$,

$$
\mathbb{P}(|\tilde{f}(S)-\widehat{f}(S)| \geq \varepsilon) \leq 2 e^{-\varepsilon^{2} m / 2}
$$

If we pick $m=\frac{2}{\varepsilon^{2}} \cdot \log (2 / \delta)$, this is $\leq \delta$.
Now we'll prove the theorem.

Proof. Here is the algorithm:

1. For every set $S \subseteq[n]$ of size $\leq k$, estimate $\widehat{f}(S)$ up to accuracy $\varepsilon^{\prime}=\sqrt{\varepsilon / n^{k}}$ and failure probability $\delta^{\prime}=\delta / n^{k}$. This gives us the estimates $\widetilde{f}(S)$.
2. Output $h(x)=\operatorname{sgn}\left(\sum_{|S| \leq k} \widetilde{f}(S) \prod_{i \in S} x_{i}\right)$.

By the lemma, using a union bound, with probability $\geq 1-\delta$, all the estimates $\tilde{f}(S)$ are ε^{\prime}-close to $\widehat{f}(S)$. Let's call this event "the good case." In this case, let $p(x)=$ $\sum_{|S| \leq k} \widetilde{f}(S) \prod_{i \in S} x_{i}$, so $h(x)=\operatorname{sgn}(p(x))$. Then

$$
\mathbb{P}_{X \sim\{ \pm 1\}^{n}}(f(X) \neq h(X))=\mathbb{P}_{X}(f(X) \neq \operatorname{sgn}(p(X)))
$$

Since f is $\{ \pm 1\}$-valued, if $f(x) \neq \operatorname{sgn}(p(x))$, then $|f(x)-p(x)| \geq 1$. So we can bound this probability by an ℓ_{2} distance.

$$
\begin{aligned}
& \leq \mathbb{E}_{X \sim\{ \pm 1\}^{n}}\left[(f(X)-p(X))^{2}\right] \\
& =\sum_{S \subseteq[n]}(\widehat{f}(X)-p(S))^{2} \\
& =\sum_{|S|:|S| \leq k}(\widehat{f}(S)-\widetilde{f}(S))^{2}+\sum_{S:|S|>k} \widehat{f}(S)^{2} \\
& \leq\left(\varepsilon^{\prime}\right)^{2} \cdot\left(1+n+\binom{n}{2}+\cdots+\binom{n}{k}\right)+\varepsilon \\
& =\underbrace{\frac{\varepsilon}{n^{k}}\left(1+n+\binom{n}{2}+\cdots+\binom{n}{k}\right)}_{\leq \varepsilon}+\varepsilon
\end{aligned}
$$

$$
\leq 2 \varepsilon
$$

Corollary 1.1. Depth-d decision trees are PAC learnable (over the uniform distribution) in time $n^{O(d)}$.

Corollary 1.2. Size-s decision trees are PAC learnable (over the uniform distribution) in time $n^{O(\log s)}$.

Corollary 1.3. LTFs (weighted majorities) can be learned in time $n^{O\left(1 / \varepsilon^{2}\right)}$.
Remark 1.1. This algorithm won't give you a decision tree, necessarily, but it will give a boolean function that approximates the decision tree.

It is open whether there are much better algorithms for learning depth- d decision trees or size-s decision trees in $\operatorname{poly}(s, n)$ time. Even the easier question of if we can learn $\log (n)$-juntas in poly (n) time is open.

1.3 Goldreich-Levin's Algorithm

In cryptography, a one-way permutation (OWP) is a permutation $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}^{n}$ which is "easy to compute" but "hard to invert." If $m<n$, another cryptographic primitive is a pseudorandom generator (PRG), a function $G:\{ \pm 1\}^{m} \rightarrow\{ \pm 1\}^{n}$ where $G\left(U_{m}\right)$ is indistinguishable from U_{n}; essentially we want to take m random bits and create n random bits which seem uniformly distributed to any algorithm.

Given a OWP $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}^{n}$, let $G:\{ \pm 1\}^{2 n} \rightarrow\{ \pm 1\}^{2 n+1}$ be

$$
g(r, s)=\left(r, f(s), \mathrm{IP}_{2}(r, s)\right)
$$

where IP_{2} is the inner product mod 2 , viewing the inputs as elements of \mathbb{F}_{2}. As an exercise, show that if f is a OWP, then G is a PRG.

Goldreich-Levin is actually a learning algorithm in the membership query model. The setting is the same as in PAC learning, but the learner can request/query the value of $f(x)$ for any $x \in\{ \pm\}^{n}$.

Theorem 1.2 (Goldreich-Levin). Given query access to f, there exists an algorithm that finds all "heavy" Fourier coefficients of f. Namely, given $\theta \in(0,1)$, the algorithm outputs with high probability a list \mathcal{L} such that

$$
|\widehat{f}(S)| \geq \theta \Longrightarrow S \in \mathcal{L}, \quad S \in \mathcal{L} \Longrightarrow|\widehat{f}(S)| \geq \theta / 2
$$

The algorithm's runtime is n poly $(1 / \theta)$.
These conditions imply that the list \mathcal{L} will have $\leq 4 / \theta^{2}$ elements. Here is how we connect this theorem back to learning theory.

Corollary 1.4 (Kushilevitz-Mansour). Let \mathcal{C} be a concept class such that any $f:\{ \pm 1\}^{n} \rightarrow$ $\{ \pm 1\}$ in \mathcal{C} is ε-concentrated on at most M (unknown) coefficients. Then, \mathcal{C} is learnable using queries with accuracy $O(\varepsilon)$ in time poly $(M, n, 1 / \varepsilon)$.

Here are some consequences.
Corollary 1.5. Decision trees of depth d are learnable with queries in $\operatorname{poly}(n) \cdot 2^{O(d)}$ time.
Corollary 1.6. Decision trees of size s are learnable with queries in poly (s, n) time.
Corollary 1.7. k-juntas are learnable with queries in $\operatorname{poly}(n) \cdot 2^{O(k)}$ time.
Let's first show how the Goldreich-Levin theorem implies the corollary. We will prove the Goldreich-Levin next time.

Proof. Take $\theta=\sqrt{\varepsilon / M}$, and apply Goldreich-Levin's algorithm to get the list \mathcal{L}. Output a hypothesis h by running the LMN algorithm on \mathcal{L}; we can use this algorithm for any
arbitrary collection of Fourier coefficients, not just the ones for sets of size $\leq k$. By assumption on f, there exists a set \mathcal{F} of size M such that

$$
\sum_{S \in \mathcal{F}} \widehat{f}(S)^{2} \leq \varepsilon, \quad \sum_{S \in \mathcal{F}} \widehat{f}(S)^{2} \geq 1-\varepsilon .
$$

Assuming GL gave the list as guaranteed with high probability. We know that

$$
\mathcal{L} \supseteq\{S:|\widehat{f}(S)| \geq \theta\}, \quad|\mathcal{L}| \leq \frac{4}{\theta^{2}}
$$

Now look at

$$
\begin{aligned}
\sum_{S \notin \mathcal{L}} \widehat{f}(S)^{2} & =\sum_{S \notin \mathcal{L}, S \in \mathcal{F}} \widehat{f}(S)^{2}+\sum_{S \notin \mathcal{L}, S \notin \mathcal{F}} \widehat{f}(S)^{2} \\
& \leq M \theta^{2}+\varepsilon \\
& \leq M\left(\sqrt{\frac{\varepsilon}{M}}\right)^{2}+\varepsilon \\
& =2 \varepsilon .
\end{aligned}
$$

Now the LMN algorithm gives a hypothesis that is $O(\varepsilon)$-close to f.
Here is the idea of the GL algorithm: For $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$, we want to find the set of coefficients $\{S:|\widehat{f}(S)| \geq \theta\}$. The idea is to look at all sets, so $\sum \widehat{f}(S)^{2}=1$. Now split into two cases: all sets that include 1 and all sets that do not include 1 . We will show that we can calculate $\sum \widehat{f}(S)^{2}$ in each case and recursively look at the sets which do or do not contain the next element.

