
Computer Science 294 Lecture 7 Notes

Daniel Raban

February 7, 2023

1 Low Degree Learning and Goldreich-Levin’s Algorithm

1.1 Recap: weights and approximation of boolean functions

Recall that if we have a boolean function f : {±1}n → {±1}, then we can write

f(x) =
∑
S⊆[n]

f̂(S)
∏
i∈S

xi.

We had Parseval’s identity ∑
S⊆[n]

f̂(S)2 = 1

and defined the weights at different degrees as

W k(f) :=
∑

S:|S|=k

f̂(S)2, W>k :=
∑

S:|S|>k

f̂(S)2.

We said that f is ε-concentrated up to degree k if W>k ≤ ε. We also saw that f is
well-concentrated up to degree k if and only if f is well-approximated in `2-norm by deg k
polynomials.

1.2 PAC learning

Today we will be talking about PAC (probably approximately correct) learning [Valiant
’84]. The motivation is that given many examples, we want to learn a “simple” hypothesis
that explains the data and generalizes.

We make the assumption that the data itself is labeled according to a “simple” function
like

• k-junta

• low depth decision tree

1

• small size decision tree.

More formally, suppose you have a concept class C ⊆ {f : {±1}n → {±1}}, for
example decision trees. Let f ∈ C be unknown to you. You get a collection of random
labeled examples (x(1), f(x(1))), (x(2), f(x(2))), . . . where each x(i) is selected uniformly at
random from {±1}n. The goal is to output a hypothesis h : {±1}n → {±1}n such that
with probability at least 1− δ, the hypothesis is ε-close to f . That is,

PX∼{±1}n(h(X) 6= f(X)) ≤ ε.

Valiant originally considered this for distributions which were not necessarily uniform. In
that case, you need to compare h and f with respect to that distribution. We will only
focus on the uniform case.

Theorem 1.1 (Linial-Mansour-Nisan). Suppose C is a concept class such that any f ∈ C
is ε-concentrated up to degree k. Then C is PAC-learnable (over the uniform distribution)
in time poly(nk, 1/ε, log(1/δ)).

We will show that with probability ≥ 1− δ, the algorithm would output h such that

PX∼{±1}n(h(X) 6= f(X)) ≤ 2ε.

Before proving this theorem, we will first prove a lemma:

Lemma 1.1. Let f : {±1}n → {±1} and S ⊆ [n]. Then, given random labeled examples,
we can estimate f̂(S) up to additive accuracy ε, with probability at least 1 − δ in time
O(n · log(1/δ)/ε2).

This is a direct consequence of Hoeffding’s inequality.

Lemma 1.2 (Chernoff-Hoeffding). If Z1, . . . , Zn are iid and bounded (−1 ≤ Zi ≤ 1), then

P

(∣∣∣∣∣ 1

m

m∑
i=1

Zi − E[Z1]

∣∣∣∣∣
)
≤ 2e−ε

2m/2.

Proof. Recall that f̂(S) = EX∼{±1}n [f(X)χS(X)]. Sample m inputs uniformly at random:

x(1), x(2), . . . , x(m), and calculate the empirical mean f̃(S) = 1
m

∑m
i=1 f(x(i))χS(x(i)). Then,

by Chernoff with Zi = f(x(i))χS(x(i)) (so E[Z1] = f̂(S),

P(|f̃(S)− f̂(S)| ≥ ε) ≤ 2e−ε
2m/2.

If we pick m = 2
ε2
· log(2/δ), this is ≤ δ.

Now we’ll prove the theorem.

2

Proof. Here is the algorithm:

1. For every set S ⊆ [n] of size ≤ k, estimate f̂(S) up to accuracy ε′ =
√
ε/nk and

failure probability δ′ = δ/nk. This gives us the estimates f̃(S).

2. Output h(x) = sgn(
∑
|S|≤k f̃(S)

∏
i∈S xi).

By the lemma, using a union bound, with probability ≥ 1 − δ, all the estimates f̃(S)
are ε′-close to f̂(S). Let’s call this event “the good case.” In this case, let p(x) =∑
|S|≤k f̃(S)

∏
i∈S xi, so h(x) = sgn(p(x)). Then

PX∼{±1}n(f(X) 6= h(X)) = PX(f(X) 6= sgn(p(X)))

Since f is {±1}-valued, if f(x) 6= sgn(p(x)), then |f(x)− p(x)| ≥ 1. So we can bound this
probability by an `2 distance.

≤ EX∼{±1}n [(f(X)− p(X))2]

=
∑
S⊆[n]

(f̂(X)− p(S))2

=
∑

|S|:|S|≤k

(f̂(S)− f̃(S))2 +
∑

S:|S|>k

f̂(S)2

≤ (ε′)2 ·
(

1 + n+

(
n

2

)
+ · · ·+

(
n

k

))
+ ε

=
ε

nk

(
1 + n+

(
n

2

)
+ · · ·+

(
n

k

))
︸ ︷︷ ︸

≤ε

+ε

≤ 2ε.

Corollary 1.1. Depth-d decision trees are PAC learnable (over the uniform distribution)
in time nO(d).

Corollary 1.2. Size-s decision trees are PAC learnable (over the uniform distribution) in
time nO(log s).

Corollary 1.3. LTFs (weighted majorities) can be learned in time nO(1/ε2).

Remark 1.1. This algorithm won’t give you a decision tree, necessarily, but it will give a
boolean function that approximates the decision tree.

It is open whether there are much better algorithms for learning depth-d decision trees
or size-s decision trees in poly(s, n) time. Even the easier question of if we can learn
log(n)-juntas in poly(n) time is open.

3

1.3 Goldreich-Levin’s Algorithm

In cryptography, a one-way permutation (OWP) is a permutation f : {±1}n → {±1}n
which is “easy to compute” but “hard to invert.” If m < n, another cryptographic primitive
is a pseudorandom generator (PRG), a function G : {±1}m → {±1}n where G(Um) is
indistinguishable from Un; essentially we want to take m random bits and create n random
bits which seem uniformly distributed to any algorithm.

Given a OWP f : {±1}n → {±1}n, let G : {±1}2n → {±1}2n+1 be

g(r, s) = (r, f(s), IP2(r, s)),

where IP2 is the inner product mod 2, viewing the inputs as elements of F2. As an exercise,
show that if f is a OWP, then G is a PRG.

Goldreich-Levin is actually a learning algorithm in the membership query model. The
setting is the same as in PAC learning, but the learner can request/query the value of f(x)
for any x ∈ {±}n.

Theorem 1.2 (Goldreich-Levin). Given query access to f , there exists an algorithm that
finds all “heavy” Fourier coefficients of f . Namely, given θ ∈ (0, 1), the algorithm outputs
with high probability a list L such that

|f̂(S)| ≥ θ =⇒ S ∈ L, S ∈ L =⇒ |f̂(S)| ≥ θ/2.

The algorithm’s runtime is n poly(1/θ).

These conditions imply that the list L will have ≤ 4/θ2 elements. Here is how we
connect this theorem back to learning theory.

Corollary 1.4 (Kushilevitz-Mansour). Let C be a concept class such that any f : {±1}n →
{±1} in C is ε-concentrated on at most M (unknown) coefficients. Then, C is learnable
using queries with accuracy O(ε) in time poly(M,n, 1/ε).

Here are some consequences.

Corollary 1.5. Decision trees of depth d are learnable with queries in poly(n) ·2O(d) time.

Corollary 1.6. Decision trees of size s are learnable with queries in poly(s, n) time.

Corollary 1.7. k-juntas are learnable with queries in poly(n) · 2O(k) time.

Let’s first show how the Goldreich-Levin theorem implies the corollary. We will prove
the Goldreich-Levin next time.

Proof. Take θ =
√
ε/M , and apply Goldreich-Levin’s algorithm to get the list L. Output

a hypothesis h by running the LMN algorithm on L; we can use this algorithm for any

4

arbitrary collection of Fourier coefficients, not just the ones for sets of size ≤ k. By
assumption on f , there exists a set F of size M such that∑

S∈F
f̂(S)2 ≤ ε,

∑
S∈F

f̂(S)2 ≥ 1− ε.

Assuming GL gave the list as guaranteed with high probability. We know that

L ⊇ {S : |f̂(S)| ≥ θ}, |L| ≤ 4

θ2
.

Now look at ∑
S/∈L

f̂(S)2 =
∑

S/∈L,S∈F

f̂(S)2 +
∑

S/∈L,S /∈F

f̂(S)2

≤Mθ2 + ε

≤M
(√

ε

M

)2

+ ε

= 2ε.

Now the LMN algorithm gives a hypothesis that is O(ε)-close to f .

Here is the idea of the GL algorithm: For f : {±1}n → {±1}, we want to find the set
of coefficients {S : |f̂(S)| ≥ θ}. The idea is to look at all sets, so

∑
f̂(S)2 = 1. Now split

into two cases: all sets that include 1 and all sets that do not include 1. We will show that
we can calculate

∑
f̂(S)2 in each case and recursively look at the sets which do or do not

contain the next element.

5

	Low Degree Learning and Goldreich-Levin's Algorithm
	Recap: weights and approximation of boolean functions
	PAC learning
	Goldreich-Levin's Algorithm

