Computer Science 294 Lecture 7 Notes

Daniel Raban

February 7, 2023

1 Low Degree Learning and Goldreich-Levin’s Algorithm

1.1 Recap: weights and approximation of boolean functions

Recall that if we have a boolean function f : {£1}" — {+£1}, then we can write

f@)y="> F$) [

SC[n) i€s
We had Parseval’s identity
> f8P=1
SCln]

and defined the weights at different degrees as

Wh(F) = D F(8)%, W= > (9)%

S:|S|=k S:|S|>k

We said that f is e-concentrated up to degree k if W>* < . We also saw that f is
well-concentrated up to degree k if and only if f is well-approximated in fs-norm by deg k

polynomials.

1.2 PAC learning

Today we will be talking about PAC (probably approximately correct) learning [Valiant
’84]. The motivation is that given many examples, we want to learn a “simple” hypothesis

that explains the data and generalizes.

We make the assumption that the data itself is labeled according to a “simple” function

like
e k-junta

e low depth decision tree

e small size decision tree.

More formally, suppose you have a concept class C C {f : {£1}" — {£1}}, for
example decision trees. Let f € C be unknown to you. You get a collection of random
labeled examples (z(1| f(z(D)), (@) f(x?))), ... where each () is selected uniformly at
random from {+1}". The goal is to output a hypothesis h : {£1}" — {£1}" such that
with probability at least 1 — §, the hypothesis is e-close to f. That is,

Pxqziyn (MX) # f(X)) <e.

Valiant originally considered this for distributions which were not necessarily uniform. In
that case, you need to compare h and f with respect to that distribution. We will only
focus on the uniform case.

Theorem 1.1 (Linial-Mansour-Nisan). Suppose C is a concept class such that any f € C
is e-concentrated up to degree k. Then C is PAC-learnable (over the uniform distribution)
in time poly(n®,1/e,log(1/6)).

We will show that with probability > 1 — §, the algorithm would output A such that

Px g (h(X) # f(X)) < 2e.
Before proving this theorem, we will first prove a lemma:

Lemma 1.1. Let f: {£1}" — {£1} and S C [n]. Then, given random labeled exzamples,
we can estimate f(S) up to additive accuracy e, with probability at least 1 — § in time

O(n -log(1/68)/?).
This is a direct consequence of Hoeffding’s inequality.

Lemma 1.2 (Chernoff-Hoeffding). If Z1, ..., Z, are #id and bounded (—1 < Z; < 1), then

]ID (
Proof. Recall that f(S) = Ex~+1}2[f(X)xs(X)]. Sample m inputs uniformly at random:

M 2@ 2™ and calculate the empirical mean f(S) = Ly (@) xs(xz®). Then,
by Chernoff with Z; = f(z®)xs(z®) (so E[Z1] = f(S),

1 m
13" g iz) <2
m =1

P(|f(S) — f(S)| > &) < 2e7™/2,
If we pick m = % -log(2/6), this is < 4. O

Now we’ll prove the theorem.

Proof. Here is the algorithm:

1. For every set S C [n] of size < k, estimate f(S) up to accuracy & = /z/nF and
failure probability 6’ = §/n*. This gives us the estimates f(.5).

2. Output h(z) = sgn(}_g<s, [(5) [Lies i)-

By the lemma, using a union bound, with probability > 1 — 4, all the estimates f(5)
are ¢'-close to f(S). Let’s call this event “the good case.” In this case, let p(z) =

> 1s1<k £ (8) [Ties i, so h(z) = sgn(p(z)). Then

Px gy (f(X) # h(X)) = Px (f(X) # sgn(p(X)))
Since f is {£1}-valued, if f(z) # sgn(p(z)), then |f(x) — p(x)| > 1. So we can bound this
probability by an #» distance.
< Exepenp [(f(X) = p(X))?]
= > (J(X) = p(S))’

SC[n]

o~ ~ -~

= Y (f(8) = f(9))*+

|S|:|S|<k S:|1S|>k

()2 <1+n+<;‘>+---+

<
5o () ()

<e
< 2e.]

IN

Corollary 1.1. Depth-d decision trees are PAC learnable (over the uniform distribution)
O(d)

m ttme no\Y.
Corollary 1.2. Size-s decision trees are PAC learnable (over the uniform distribution) in
time nOUogs),

Corollary 1.3. LTFs (weighted majorities) can be learned in time nO/e?),
Remark 1.1. This algorithm won’t give you a decision tree, necessarily, but it will give a
boolean function that approximates the decision tree.

It is open whether there are much better algorithms for learning depth-d decision trees
or size-s decision trees in poly(s,n) time. Even the easier question of if we can learn
log(n)-juntas in poly(n) time is open.

1.3 Goldreich-Levin’s Algorithm

In cryptography, a one-way permutation (OWP) is a permutation f : {+1}" — {+1}"
which is “easy to compute” but “hard to invert.” If m < n, another cryptographic primitive
is a pseudorandom generator (PRG), a function G : {£1}™ — {£1}" where G(Uy,) is
indistinguishable from U,,; essentially we want to take m random bits and create n random
bits which seem uniformly distributed to any algorithm.

Given a OWP f: {£1}" — {£1}" let G : {£1}?" — {£1}2"F! be

g(T, S) = (va(S)JP?(Tv 5))7

where IP5 is the inner product mod 2, viewing the inputs as elements of F». As an exercise,
show that if f is a OWP, then G is a PRG.

Goldreich-Levin is actually a learning algorithm in the membership query model. The
setting is the same as in PAC learning, but the learner can request/query the value of f(z)
for any © € {£}".

Theorem 1.2 (Goldreich-Levin). Given query access to f, there exists an algorithm that
finds all “heavy” Fourier coefficients of f. Namely, given 6 € (0,1), the algorithm outputs
with high probability a list L such that

~ ~

f(9) >0 = SeL, SeL = |f(9)]>06/2
The algorithm’s runtime is n poly(1/0).

These conditions imply that the list £ will have < 4/6? elements. Here is how we
connect this theorem back to learning theory.

Corollary 1.4 (Kushilevitz-Mansour). Let C be a concept class such that any f : {£1}" —
{£1} in C is e-concentrated on at most M (unknown) coefficients. Then, C is learnable
using queries with accuracy O(g) in time poly(M,n,1/¢).

Here are some consequences.
Corollary 1.5. Decision trees of depth d are learnable with queries in poly(n) - 20(d) time.
Corollary 1.6. Decision trees of size s are learnable with queries in poly(s,n) time.
Corollary 1.7. k-juntas are learnable with queries in poly(n) - 20(6) time.

Let’s first show how the Goldreich-Levin theorem implies the corollary. We will prove
the Goldreich-Levin next time.

Proof. Take 0 = \/e/M, and apply Goldreich-Levin’s algorithm to get the list £. Output
a hypothesis A by running the LMN algorithm on £; we can use this algorithm for any

arbitrary collection of Fourier coefficients, not just the ones for sets of size < k. By

assumption on f, there exists a set F of size M such that
S fs2<e Y f92z1-e
SeF SeF
Assuming GL gave the list as guaranteed with high probability. We know that

~ 4
LO{S:TS) 20} 1€ 5

Now look at

STHS= Y F92+ YD f(9)

S¢r S¢L,SeF S¢L,S¢F
< M6? + ¢

2
SM(U]\Z) +€
= 2¢.

Now the LMN algorithm gives a hypothesis that is O(e)-close to f.

O

Here is the idea of the GL algorithm: For f: {£1}" — {£1}, we want to find the set

~

of coefficients {S : |f(S)| > 6}. The idea is to look at all sets, so > f(S)? = 1. Now split
into two cases: all sets that include 1 and all sets that do not include 1. We will show that
we can calculate > f(5)? in each case and recursively look at the sets which do or do not

contain the next element.

	Low Degree Learning and Goldreich-Levin's Algorithm
	Recap: weights and approximation of boolean functions
	PAC learning
	Goldreich-Levin's Algorithm

